Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Liq ; 357: 119092, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1778379

ABSTRACT

COVID-19 is the disease caused by a novel coronavirus (CoV) named the severe acute respiratory syndrome coronavirus 2 (termed SARS coronavirus 2 or SARS-CoV-2). Since the first case reported in December 2019, infections caused by this novel virus have led to a continuous global pandemic that has placed an unprecedented burden on health, economic, and social systems worldwide. In response, multiple therapeutic options have been developed to stop this pandemic. One of these options is based on traditional corticosteroids, however, chemical modifications to enhance their efficacy remain largely unexplored. Obtaining additional insight into the chemical and physical properties of pharmacologically effective drugs used to combat COVID-19 will help physicians and researchers alike to improve current treatments and vaccines (i.e., Pfizer-BioNTech, AstraZeneca, Moderna, Janssen). Herein, we examined the charge-transfer properties of two corticosteroids used as adjunctive therapies in the treatment of COVID-19, hydrocortisone and dexamethasone, as donors with 2,3-dichloro-5,6-dicyano-p-benzoquinone as an acceptor in various solvents. We found that the examined donors reacted strongly with the acceptor in CH2Cl2 and CHCl3 solvents to create stable compounds with novel clinical potential.

2.
J Mol Liq ; 335: 116250, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1198990

ABSTRACT

Investigating the chemical properties of molecules used to combat the COVID-19 pandemic is of vital and pressing importance. In continuation of works aimed to explore the charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat COVID-19, the disease resulting from infection with the novel SARS-CoV-2 virus, in this work, a highly efficient, simple, clean, and eco-friendly protocol was used for the facile synthesis of charge-transfer complexes (CTCs) containing azithromycin and three π-acceptors: 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), and tetrafluoro-1,4-benzoquinone (TFQ). This protocol involves grinding bulk azithromycin as the donor (D) with the investigated acceptors at a 1:1 M ratio at room temperature without any solvent. We found that this protocol is environmentally benign, avoids hazardous organic solvents, and generates the desired CTCs with excellent yield (92-95%) in a straightforward means.

SELECTION OF CITATIONS
SEARCH DETAIL